
ThoughtTrim: Anchor-Driven RL Modification1

Andrew Briand†

atb8888@comcast.net
Josh Rauvola†

jrauvola@gmail.com
With Apart Research

†Equal contribution.

Abstract

Large language models often generate long chain-of-thought (CoT) traces in which only a small
subset of sentences materially influences the final answer. We propose ThoughtTrim: a simple
evaluation framework that ranks CoT chunks by counterfactual-importance KL [1], reconstructs
prompts using only the top-ranked chunks, and measures the accuracy-retention trade-off as filtering
thresholds rise. Using Qwen2.5-1.5B on a 100-question Biology subset of MMLU-Pro, we find that
(i) for some questions, KL-guided trimming preserves accuracy at substantial token savings (60-90%
on many items), (ii) “first failure” thresholds are heterogeneous - some problems fail immediately
while a long tail remains robust up to aggressive pruning, and (iii) a KL-shuffled control that
preserves the number of kept chunks but breaks informativeness is consistently worse than the
original selection, demonstrating the value of the ranking signal. We release a lightweight pipeline
that utilizes the counterfactual-importance KL to understand the thresholds, efficiency frontiers,
and failure distributions. This opens up future work in creating systems that are more deterministic,
efficient, and robust through fine-tuning approaches leading to safer more deterministic approaches
in agentic and LLM-based systems.

Keywords: Reasoning optimization, thought anchors, RL fine-tuning, AI security, model evalua-

tions, safety infrastructure

1. Introduction

Reasoning models love to narrate. That’s great when the narrative is doing real work; it’s
wasteful when the model spins its wheels. ThoughtTrim starts from the observation in [1]
that only a handful of sentences, called thought anchors appear to have a large influence on
the model’s final answer distribution. If we could compress prompts around the ”backbone”
formed by these thought anchors while retaining accuracy, we could improve inference
efficiency and produce shorter, potentially easier to digest CoTs.

Practically, we (i) detect high-influence sentences in chain-of-thought traces, (ii) attempt
to formulate an ”anchor” CoT which contains only the most important sentences, (iii) re-run
inference to measure accuracy.

2. Methods

2.1. Model pair and why this comparison

We use a clean A/B pair at the ∼1.5B scale: R1-Distill-Qwen-1.5B (a reasoning model
distilled to emit <think>...</think> traces) versus Qwen2.5-1.5B (a non-reasoning base-
line that answers directly) [3, 4]. Same backbone family and size; different post-training

1Research conducted at the CBRN AI Risks Research Sprint, 2025.

Apart Research Hackathon Submission 1

https://apartresearch.com/sprints/cbrn-ai-risks-sprint-2025-09-12-to-2025-09-14

behavior. This lets us isolate the causal effect of explicit CoT training. We generate rollouts
with R1-Distill-Qwen-1.5B and inject our trimmed CoTs into Qwen2.5-1.5B, using the
same prompts for both.

2.2. Dataset

We evaluate on the Biology subset of MMLU-Pro [2]; see Section 2.3 for details on the
benchmark and its differences from the original MMLU.

2.3. Benchmark: MMLU-Pro

Overview. MMLU-Pro is an enhanced successor to the original Massive Multitask
Language Understanding benchmark, designed to stress reasoning rather than recall. It
comprises ∼12k rigorously curated multiple-choice questions drawn from exams and textbooks
across 14 domains (Biology, Business, Chemistry, Computer Science, Economics, Engineering,
Health, History, Law, Math, Philosophy, Physics, Psychology, and Others). Problems are
formatted with ten answer options (A–J), which lowers the random-guess baseline to 10%
and makes evaluation more realistic. During this body of work we take a randomized subset
of 100 biology question to evaluate the model’s ability to reason and answer the questions
correctly using our proposed methodology. This is due to resource constraints and time
constraints. A more robust evaluation would evaluate the model on the entire dataset.

Evaluation protocol in this work. Following the dataset’s 10-choice format, we constrain
model outputs to a single letter ∈ {A,. . . ,J} after any optional </think> block. Concretely,
we guide decoding with the regex [^<]*</think>\nThe correct answer is [ABCDEFGHIJ]

to ensure parseable, answer-only scoring. We report accuracy as the primary metric, with
secondary analysis token count.

2.4. Evaluation pipeline (ThoughtTrim)

Our toolchain runs three steps per problem and threshold: (1) filtering—rank chunks by
counterfactual-importance KL (min–max normalized per problem to [0, 1]); keep chunks
with score ≥ a threshold t and reconstruct the prompt in the original order; (2) model
runs—embed the filtered CoT in the original prompt and query Qwen2.5-1.5B via Ollama
with answer-only scoring; (3) aggregation—compute per-problem accuracy vs. threshold
and then average across problems at each threshold.

2.5. Randomized baseline and normalization

To test whether KL-based selection beats non-informative selection, we add a KL shuffle
control: shuffle the (per-problem normalized) KL scores across chunks, apply the same
thresholds, and repeat the evaluation. This preserves how much text is kept in terms of
number of sentences but breaks the informativeness of the ranking. Throughout, KL scores
are min–max normalized per problem to make thresholds comparable across items.

Apart Research Hackathon Submission 2

3. Anchor discovery

3.1. What are thought anchors?

Following Bogdan et al. [1], we use the term thought anchors for sentences in a chain-of-
thought that exert outsized causal influence on subsequent reasoning and the final answer.
In [1], evidence comes from three complementary lenses: (i) a black-box resampling test of
counterfactual importance that compares outcome distributions across 100 rollouts conditioned
on including a sentence vs. replacing it with a semantically different variant; (ii) a white-box
aggregation of attention patterns that reveals “broadcasting” sentences attracting receiver-
head attention from many future tokens; and (iii) a causal attention-suppression probe that
dampens attention to a sentence and measures downstream effects token-by-token. In this
work we focus on (i).

3.2. Setup and metrics for anchor discovery

We represent the model’s reasoning trace for question q as tokens y1:T from policy πθ,
segmented into sentences S1, . . . , SM with token index sets Sj ⊆ {1, . . . , T}. The final answer
is a categorical variable Z ∈ A with |A| = 10 for MMLU-Pro.

Black-box counterfactual importance via rollouts (used). For each sentence Sj, we
estimate two answer distributions using rollouts:

• Present: condition on the prefix up to Sj−1 and include the exact sentence Sj; then
sample R rollouts for the suffix.

• Absent: condition on the prefix up to Sj−1 only (do not include Sj); then sample R
rollouts for the suffix.

For a given rollout r in the Absent rollouts, let Tj be the sentence that replaced Sj. If
Tj is semantically similar to Sj, defined as the dot product of the sentences’ embeddings by
all-MiniLM-L6-v2 being greater than 0.8, then we move r to the Present distribution. Let
n
(c)
j,a be the number of times answer a ∈ A appears under condition c ∈ {pres, abs}. With

Laplace smoothing α > 0,

P̂
(c)
j (a) =

n
(c)
j,a + α

R + α |A|
(c ∈ {pres, abs}).

In our experiments we use R = 100 and α = 1. Sentences are ranked by IKL
j and we select

the top-K as anchors.

See appendix 7.1 for details about our setup for rollouts.

4. Results

We evaluate on 100 Biology questions from MMLU-Pro using Qwen2.5-1.5B. Unless stated,
thresholds sweep t ∈ [0, 1] with step 0.01 over KL (normalized per problem). Model decoding
uses greedy decoding and answer-only scoring to minimize variance.

Apart Research Hackathon Submission 3

4.1. Key empirical findings

Across 100 Biology questions:

• Accuracy vs. threshold. The original curve decays gradually from ∼95% at t = 0
to ∼46% near t = 1.0. The KL shuffle baseline is consistently below the original after
t0.05, indicating that KL ranking retains more task-relevant chunks than chance.

• First-failure distribution. Most problems fail between t ∈ [0.6, 0.9]; a long tail
remains correct up to t ≈ 1.0, suggesting some questions are robust to heavy trimming.

• Token savings. Substantial token reductions (60–90%) are possible while maintaining
≥80% accuracy for many questions.

4.2. Why Original and KL shuffle converge only at the end

Since the model is scored on reconstructed CoTs, correctness differs even when only few
sentences remain in the CoT. Once all chunks have been removed, we see in Figure 1 that
accuracy converges.

5. Discussion and Conclusion

KL-guided trimming is a simple, data-driven and black-box way to compress CoT while
preserving utility. Relative to a shuffled baseline that keeps the same amount of text
but discards informativeness, KL-based selection consistently wins—especially in the mid-
threshold regime where most practical budgets lie. First-failure and efficiency-frontier
views reveal heterogeneous robustness across items, arguing for per-domain or per-problem
thresholds rather than a single global value. For future work, we would aim to choose
thresholds on the frontier that meet accuracy requirements (e.g., ≥80%) while minimizing
retention.

Future work includes (i) multi-sample rather than greedy evaluation (ii) anchor-aware
fine-tuning so models learn to follow high-impact steps without explicit filtering, and (iii)
domain-adapted safety checks for CBRN-adjacent applications.

5.1. Policy objective for anchor-following RL (Future Work)

Let πθ generate tokens y1:T and let P denote a compact anchor plan extracted from the
selected anchors. We shape a reward

R = Rtask + λplanRplan − µfluff Rfluff − β T,

where Rtask = 1[Z = a∗], Rplan rewards adherence to plan checkpoints (e.g., emitting required
subgoal statements or checks), Rfluff penalizes off-plan narration, and T is token count. We
optimize J(θ) = E[R] with PPO, constraining KL to a reference policy. In practice we
implement Rplan/Rfluff via simple regex/critic signals keyed to anchor semantics.

6. References

References

[1] P.C. Bogdan, U. Macar, N. Nanda, and A. Conmy. Thought Anchors: Which LLM
Reasoning Steps Matter? 2025.

Apart Research Hackathon Submission 4

[2] Y. Wang, X. Ma, G. Zhang, Y. Ni, A. Chandra, S. Guo, W. Ren, A. Arulraj, X. He,
Z. Jiang, et al. “MMLU-Pro: A more robust and challenging multi-task language
understanding benchmark,” arXiv preprint arXiv:2406.01574, 2024.

[3] Qwen Team. Qwen2.5: A Party of Foundation Models. September 2024. https:

//qwenlm.github.io/blog/qwen2.5/.

[4] DeepSeek-AI. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforce-
ment Learning. arXiv:2501.12948 [cs.CL], 2025. https://arxiv.org/abs/2501.12948.

7. Appendix

Figure 1: Average Accuracy vs. Filtering Threshold across 100 Biology problems. The Origi-
nal (blue) uses KL-ranked chunk selection; the KL shuffle (magenta) randomly permutes KL
per problem before thresholding, preserving keep-count but breaking informativeness. KL-based
selection consistently outperforms the shuffled control.

Apart Research Hackathon Submission 5

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2501.12948

Figure 2: Accuracy heatmap (problems × thresholds). Green indicates correctness and red
indicates failure. Columns correspond to KL thresholds (normalized per problem). Many
items are robust (green through t ≈ 0.6–0.9), while fragile items fail almost immediately (red
emerging near t ≈ 0.01–0.03). This view is useful for diagnosing which questions drive the
tails and for identifying domain-specific cohorts.

Apart Research Hackathon Submission 6

Figure 3: Efficiency frontier for representative items: threshold vs. token retention with failure
points (red X). Robust items allow large reductions; fragile ones fail early. This would motivate
per-item thresholding in an RL setting to obtain the efficiency gains of thought-trimming
without destroying model performance.

7

(a) Problem 10. Left: accuracy vs. threshold with first-failure marker; Right: token retention
vs. threshold (area under curve). This item is robust until t ≈ 0.4, then fails sharply.

(b) Problem 11. Accuracy remains ≈1.0 across the sweep; retention falls quickly—a highly
compressible case.

(c) Problem 9. Early failure followed by a secondary robust plateau: illustrates non-monotone item
behaviour that motivates per-problem thresholding.

Figure 4: Representative per-problem behaviour. These panels complement Fig. 2 by showing
the mechanics behind robust (11), late-failure (10), and fragile/non-monotone (9) cases.

8

Security Considerations

Our study focuses on the mechanics of trimming chain-of-thought for efficiency; nevertheless,
we consider security and generalization risks that matter for deployment, especially in
CBRN-adjacent settings.

This study should be interpreted within a weekend constrained scope. We evaluate a
small 1.5B Qwen model on a 100-question Biology slice of MMLU-Pro; robustness could shift
for larger models, other architectures, or different domains. Our setup is multiple-choice;
applying ThoughtTrim to free-form tasks will require re-running the analysis with open-ended
prompts, reliable answer extraction, and explicit safety content checks. We do not fine-tune in
this work. If future iterations add anchor-following or compression fine-tuning, safety should
be part of both the objective and the evaluation (e.g., guardrail/refusal rewards and gates) so
that efficiency gains do not introduce unsafe shortcuts or overconfident errors. Trimming can
also remove policy or safety statements; in high-stakes settings one should either exclude such
spans from pruning or monitor truthfulness, refusal correctness, and calibration alongside
accuracy. Finally, to reduce overfitting of conclusions, subsequent iterations should broaden
to multiple model sizes and architectures, extend beyond Biology to additional domains, and
incorporate multi-seed sampling to quantify variance.

7.1. Rollout parameters

Following the methodology of [1], we regenerate a CoT and answer for each question until the
model answers the question correctly. If the model generates an incorrect answer 100 times in
a row, we give up and skip the question. This only happened once in our 100 questions. We
then split up the CoT that led to the correct answer into chunks roughly corresponding to
sentences. For each chunk in the CoT, we create a prompt that includes the CoT up to but
not including that chunk, and then generate 100 CoTs (rollouts) from that point, recording
the answer that the model produced at the end of each rollout.

For both initial question generation and rollouts, we use a temperature of 0.6, top-p of
0.95, and a repetition penalty of 1.1. Additionally, we limited output tokens to 4096 to ensure
that the rollouts completed in a reasonable amount of time. Since we found that the small
models we tested had difficulty consistently boxing their answers, we constrained generation
using the regular expression [^<]*</think>\nThe correct answer is [ABCDEFGHIJ] to
ensure easily parsable output.

[1]:

IKL
j = KL

(
P̂ pres
j

∥∥∥ P̂ abs
j

)
=

∑
a∈A

P̂ pres
j (a) log

P̂ pres
j (a)

P̂ abs
j (a)

.

We also report the accuracy lift for the gold answer a∗:

∆j = P̂ pres
j (a∗) − P̂ abs

j (a∗).

Apart Research Hackathon Submission 9

	Introduction
	Methods
	Model pair and why this comparison
	Dataset
	Benchmark: MMLU-Pro
	Evaluation pipeline (ThoughtTrim)
	Randomized baseline and normalization

	Anchor discovery
	What are thought anchors?
	Setup and metrics for anchor discovery

	Results
	Key empirical findings
	Why Original and KL shuffle converge only at the end

	Discussion and Conclusion
	Policy objective for anchor-following RL (Future Work)

	References
	Appendix
	Rollout parameters

