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Abstract—Assessing developer productivity in expansive soft-
ware endeavors has become a pressing concern for both academia
and industry, as organizations seek reliable ways to understand
how engineering effort translates into business value. Traditional
metrics—such as commit frequency, lines of code, or code
churn—have been widely adopted but remain problematic, since
they conflate inconsequential edits with architecturally significant
reshaping and provide little insight into task-level contributions.
To address this limitation, we introduce a commit-centric analytic
framework that leverages clustering to reconfigure disbursed
commit logs into coherent parcels, termed builds, that align
more closely with the functional level of development tasks.
Unlike prior approaches that combine heterogeneous signals such
as issues, reviews, or communication logs, our method relies
solely on the structural and temporal properties of commits,
making it lightweight and broadly applicable. Each build is
evaluated along two orthogonal axes: developer effort and build
importance. Effort operationalizes the scale and character of con-
tributions, considering code proprietorship, scope, architectural
centrality, novelty, and cadence. Importance quantifies the build’s
systemic consequence, integrating scale of alteration, distribution
of changes, architectural centrality, complexity, task priority, and
proximity to release milestones. The fusion of these axes produces
the Fair Developer Score, a composite benchmark reconciling
personal exertion with organizational value. Validation centers
on exposure-controlled, matched comparisons that pair FDS-
ranked developers with commit-count peers matched on churn,
files changed, and builds participated. On the Linux Kkernel,
FDS-ranked developers exhibit significantly higher Average Im-
portance and Average Effort than volume-matched peers, with
lower rework trends. Cross-repository analyses across Kuber-
netes, TensorFlow, Apache Kafka, and PostgreSQL demonstrate
consistent Effort advantages and context-dependent Importance
effects, indicating FDS surfaces impactful work beyond raw
activity using commit-only data.

Index Terms—Developer Productivity, Torque Clustering,
Commit Clustering, Fair Developer Score, Software Engineering
Metrics

I. INTRODUCTION

Achieving a rigorous and nuanced measurement of devel-
oper productivity continues to pose a formidable question
for both software engineering scholarship and industry oper-
ations. Conventional indicators—commit frequency, lines of
code, and pull-request latency—appeal to organizations for
their straightforward quantifiability and low overhead in data
acquisition, yet these indicators yield a skewed and partial

view of both individual and collective engineering contribu-
tions. Such metrics also struggle to distinguish between minor
actions, like fixing a syntactical error, and far more substantial
undertakings, such as re-architecting core software founda-
tions. The consequence of such indiscriminate measurement
is that organizations may inadvertently discount foundational
contributions, mistake shallow speed for substantive output,
and perpetuate evaluative and promotional practices that are
inequitable or biased.

This urgency is amplified by the current climate in the
software industry, where engineering teams represent one of
the largest cost centers and yet one of the most opaque in terms
of measurable return. Organizations such as Google and Mi-
crosoft have invested heavily in productivity frameworks (e.g.,
the DORA and SPACE models), reflecting an industry-wide
recognition that developer productivity is not only a technical
concern but also a strategic determinant of competitiveness. At
a time when enterprises are increasingly asked to do more with
fewer resources, the ability to rigorously and fairly evaluate
software contributions has never been more critical.

Recent approaches have increasingly turned to data-
informed, context-sensitive frameworks that mine high-
resolution version-control histories in order to assess both the
volume and the contextual importance of contributions. Never-
theless, prevailing approaches remain hampered by the absence
of a rigorous mechanism to dissect and cluster sporadic com-
mit streams into analytically coherent work packages and to
appraise these packages with regard to both individual exertion
and cumulative organizational payload. This analytical fissure
constrains the credibility and generalizability of productivity
metrics, particularly in the complex and heterogeneous milieu
of large enterprise settings where multiple concurrent teams
and diverse software taxa coexist.

To tackle these challenges, we propose a unified framework
that marries a refined commit clustering technique with a
multi-dimensional scoring model. The architecture is under-
pinned by a variant of the Torque Clustering algorithm, which
reorders raw commits into coherent build strata that approxi-
mate the granularity of natural work units. Each resulting build
is then framed along two analytical dimensions: developer
effort, which captures the degree of individual engagement,
and build importance, which denotes the aggregate systemic



significance of the encased work. Synthesizing these two
dimensions produces the Fair Developer Score (FDS), a com-
posite measure designed to balance a developer’s personal
contribution with the overarching organizational impact.

The framework’s robustness is substantiated through a suite
of validation techniques. These encompass correlation di-
agnostics against established process endpoints, comparative
distributional analyses across stratified contributor cohorts,
and exposure-controlled matched comparisons (one-to-one
matching on churn, files changed, and builds participated).
Collectively, these converging evaluations confirm that the
FDS is both attuned to evolving development trajectories and
capable of reliably discriminating contributions that exert high
systemic leverage.

II. LITERATURE REVIEW

Assessing developer productivity remains an unresolved
dilemma in the domain of software engineering, in large part
because conventional indicators—such as the sheer number
of commits or the cumulative length of code—regularly fail
to capture the true substance of an engineer’s contributions.
Hassan [6] reframes this problem by introducing code change
complexity, a composite measure that merges the quantitative
footprint of a change with its underlying logical intricacy.
The resulting metric reveals that modifications carrying greater
logical complexity tend to exert a disproportionate influence
on the codebase, a correlation that in turn predicts defect
accumulation. Hassan’s work therefore argues for productivity
frameworks that weigh the semantics of change alongside its
magnitude.

Complementing this, the quartet of DORA metrics, as
articulated by Forsgren, Humble, and Kim in Accelerate and
reiterated in the annual State of DevOps Report, distills soft-
ware delivery performance into four dimensions: deployment
frequency, lead time for changes, change failure rate, and
mean time to recovery. Empirical validation across a large
cross-section of organizations attests to the metrics’ robustness
as macrosocietal indices of DevOps effectiveness [2]. Nev-
ertheless, the DORA framework remains intrinsically team-
oriented, and its aggregate nature produces a granularity deficit
when the goal is to evaluate individual developer input. The
resultant analytical void—namely, the challenge of relating
aggregate delivery performance to the minutiae of individual
commit history—persists as a critical limitation.

Our methodology confronts this challenge by grouping
commits into coherent work units through Torque Clustering.
This strategy allows for a more granular examination of both
developer effort and the relative significance of each task. In
addition to methodological advancements, the practicality of
a productivity measurement framework depends heavily on
its data requirements. A key advantage of our approach lies
in its minimal and universally accessible data dependency: it
only requires commit histories from a version control system
such as GitHub or GitLab. Each commit record typically
includes metadata such as author, timestamp, affected files,
and diff content, providing a rich yet standardized source of

information. This design choice makes the framework highly
reusable and flexible across enterprises, as it avoids reliance on
proprietary performance-tracking tools, sensitive time-logging
data, or organization-specific infrastructure. As a result, the
proposed model can be deployed in virtually any development
environment with minimal integration cost, making it both
scalable and adaptable to diverse industrial contexts.

III. METHODOLOGY

This section outlines the core methodology of our Program-
mer Productivity Measurement (PPM) system, which serves
as the technical implementation of the Fair Developer Score
framework. The objective is to quantify individual developers’
contributions in a fair and interpretable manner by analyzing
their code commits to assess build-level effort and importance.
The method consists of three main stages: commit clustering,
effort evaluation, and importance weighting, which together
produce a Fair Developer Score (FDS) for each contributor.!

A. Overview and Pipeline
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Fig. 1. Flowchart of the PPM System Pipeline

The Programmer Productivity Measurement (PPM) system
transforms raw development activity into a standardized Fair
Developer Score (FDS) through three main stages: commit
clustering, effort evaluation, and importance weighting, as
illustrated in Fig. 1.

'Implementation and analysis code available at https:/github.com/Digital-
Emissions/FairDeveloperScore
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In practice, the pipeline begins by collecting commit meta-
data, including timestamps, authors, files changed, and lines
added or deleted. Related commits are then grouped into
cohesive builds using the Torque Clustering algorithm [12],
which considers time proximity, file scope similarity, and
author consistency. For each build, the PPM system quantifies
individual effort using metrics such as code scale, architectural
reach, centrality, novelty, and commit speed, standardized for
comparability across repositories. Each build is also assigned
an importance score reflecting its business and architectural
impact, and the final FDS for each developer is obtained by
multiplying their effort in each build by the build’s importance
and summing across all builds.

B. Data and Applicability

The dataset used in this study is derived from the official
Linux Kernel Git repository, one of the largest and most active
open-source software projects in the world. The Linux Kernel
serves as the core component of the Linux operating system,
managing hardware resources and providing essential system
services. Its Git repository, maintained on kernel.org [8] with
a public mirror on GitHub, contains the complete source code
and full commit history dating back to 1991.

For this analysis, commit history was extracted covering
a 974-day window. Each commit record includes detailed
metadata, such as:

o Commit hash: unique identifier of the commit

o Author name and email: identifying the contributor

e Commit timestamp (UTC): recorded as a Unix epoch

timestamp

o Change statistics: number of files changed, lines inserted,

and lines deleted

o Merge flag: indicator of whether the commit is a merge

commit

o Directories touched and file types: the scope of changes

in the repository

o Commit message subject: a short description of the

change

A key advantage of this approach is its low barrier to
adoption: the framework can function using only commit meta-
data, which is available in virtually all Git-based development
environments. This means it can be applied not only to open-
source projects such as the Linux Kernel but also to proprietary
enterprise systems without exposing sensitive source code.
In enterprise contexts, commit data can be extracted and
processed entirely within secure infrastructure, ensuring that
confidentiality is maintained.

While additional project management data, such as task
priority or release proximity from tools like Jira, can en-
hance the analysis by providing richer business context, it is
not mandatory for core functionality. This design allows the
method to generalize across open-source, enterprise, and hy-
brid projects, regardless of programming language, repository
size, or development cadence. Moreover, if certain metadata
fields are unavailable, the framework can degrade gracefully
by using default values or simplified calculations, ensuring

Fair Developer Scores can still be generated under varying
data availability conditions.

C. Commit Clustering

The first step of the algorithm is to group raw Git commits
into logical working units, referred to as builds. A build
represents a cohesive development task that ensures that dif-
ferent types of work, ranging from trivial fixes to high-impact
changes, are independently evaluated. More concretely, a build
may correspond to a feature implementation (e.g., adding a
new API endpoint), a bug fix (e.g., correcting an error in
business logic), or a major refactor (e.g., restructuring core
modules for maintainability). By aggregating commits in this
way, the algorithm captures the actual intent and scope of the
developer’s work rather than treating each commit in isolation.

A heuristic-based clustering algorithm, Torque Clustering
[12], is employed, which takes into account time proximity
(At between commits), file scope similarity (measured by the
Jaccard distance between directories), and author consistency.
The torque value for two successive commits ¢ and j is
computed as:

Torque(s,j) = o - Aty j + 5 - Ac; (D

where At; ; is the time difference in seconds between commits
i and j, Ac;; is the normalized code change magnitude
(e.g., lines changed), and a and ( are sensitivity parameters
controlling the relative weight of time and code size. A new
build is initiated when:

Torque(i, j) > gap (2)

where gap is the torque threshold parameter calibrated to
balance over- and under-clustering. This formulation ensures
that commits which are both temporally close and similar in
scope are grouped together, while large temporal or structural
gaps trigger the start of a new build.

D. Developer Effort Evaluation

Once builds are formed, we assess the effort contributed by
each developer within a build. The effort score is designed to
reflect not only the quantity of code but also the quality and
complexity of the work. Effort for developer w in build b is
calculated as:

Effortu,b = Shareu,b X (wl ZScale + w2ZReach
+ wSZCentrality + W4 ZDpominance
+ w5ZN0velty + wGZSpeed) 3)

where Share measures the proportion of effective code churn
by the developer in the build. Scale (log of churn) captures
the size of code changes; Reach quantifies the spread of
changes using directory entropy. Centrality is computed via
PageRank on a co-change graph to capture each developer’s
structural influence [9]. Dominance reflects who initiated, led,
and finalized the build. Novelty captures the addition of new
modules or APIs, and Speed mildly rewards short commit
intervals.



All metrics are standardized using robust MAD-Z normal-
ization, a modified Z-score method based on the median and
median absolute deviation (MAD) rather than the mean and
standard deviation, making it more resistant to outliers and
skewed distributions [7]. This robustness is important because
relying solely on churn-based measures such as lines of code
has been shown to correlate poorly with actual developer
effort. By integrating multiple dimensions, ranging from code
quantity to architectural impact, this formulation ensures that
developer productivity is assessed in a fair and context-
aware manner, avoiding the pitfalls of simplistic single-metric
evaluations.

E. Build Importance Assessment

Each build’s importance is computed independently to cap-
ture both its business relevance and architectural significance:

Importance;, =0.30Zscate + 0.20 Zscope
+ 0~15ZCemrality + 0'15ZC0mPIeXitY
+ 0.1OZType + 0.10ZRejease “4)

The importance score integrates structural and semantic
build characteristics, combining metrics such as total code
churn (Scale), file-level dispersion and directory entropy
(Scope), architectural impact via PageRank centrality (Central-
ity), and a composite measure of spread and churn (Complex-
ity). Type encodes task priority using a commit-message clas-
sifier to distinguish urgent versus routine changes: a practice
supported by research showing the value of semantic-aware
classification of commit messages [11]. Release rewards prox-
imity to major release tags, capturing time-sensitive signifi-
cance in development cycles. All components are standardized
using robust MAD-Z normalization and weighted according to
predefined coefficients to yield a single importance score per
build.

This multifaceted design ensures that high-importance
builds arise not merely from large-scale churn, but from strate-
gically significant or complex work that advances architectural
or business value. By incorporating both textual semantics
and network-based centrality, the metric avoids simplistic
estimations of importance, promoting a more context-aware
evaluation framework.

FE. Fair Developer Score Aggregation

The final productivity metric for each developer, Fair Devel-
oper Score (FDS), is computed by summing their contributions
across all builds:

FDS, = ZEffortu)b x Importance,, (@)
b

This formulation enables a more nuanced assessment of
developer contributions by integrating both quantitative effort
and contextual significance. It ensures that recognition is not
solely based on code volume, a metric widely criticized for its
poor correlation with actual developer value, but also accounts
for the strategic value of the work, such as modifications
involving high architectural complexity, time sensitivity, or

proximity to critical release milestones, aligning with modern
software delivery research that emphasizes outcome-oriented
metrics over raw output [2].

IV. RESULTS AND VALIDATION OF THE FAIR DEVELOPER
SCORE

This section presents the empirical results of applying the
Fair Developer Score (FDS) framework to the Linux Kernel
commit dataset described in Section III. The goal is twofold:
first, to summarize the computed FDS values and their distri-
bution across developers; and second, to validate that the met-
ric behaves in accordance with its design objectives. Validation
focuses on examining the internal consistency of the metric,
comparing it with traditional productivity measures, and per-
forming case analyses of high-value contributions. Through
these steps, we assess whether the FDS reliably captures
both the quantitative effort and the contextual significance of
developer activities.

A. Overview of Computed FDS

The Fair Developer Score (FDS) was computed for 339
contributors across a 974-day window of build-level activ-
ity, combining each developer’s average effort and the ar-
chitectural/business importance of the builds they touched.
The resulting FDS values are extremely skewed: scores span
from just 0.0105 up to 210.17, with a median of 0.35. This
long-tailed distribution reflects the project’s core—periphery
structure—most participants show modest, low-importance
involvement, while a handful of core maintainers dominate
both the volume and strategic impact of the code base.

The top contributors, including torvalds@linux-
foundation.org, demonstrated sustained activity with high
build frequency, large churn, and consistent involvement in
architecturally significant changes. In contrast, developers
with the lowest scores had low build frequency, minimal file
churn, and appeared to focus on minor or isolated updates.
This contrast suggests that the FDS effectively differentiates
central contributors from peripheral ones.

B. Validation of the FDS Metric

To evaluate the fairness and robustness of the Fair Developer
Score (FDS) metric, we conducted several validation steps
aimed at assessing both its statistical behavior and its practical
effectiveness in distinguishing meaningful contributions.

Distribution of Fair Developer Scores

Frequency

0 50 100 150 200
FDS

Fig. 2. Distribution of FDS Values



We examined the distribution of FDS values using his-
tograms. The resulting distribution shown in Fig. 2 revealed
a clear right-skewed shape, where the majority of developers
scored in the lower range (below the median of 0.35), and only
a few outliers achieved significantly high scores. This skewed
distribution is expected in collaborative software projects and
supports the notion that FDS effectively highlights standout
performers without inflating the scores of routine contributors.

FDS vs Average Effort
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Fig. 4. FDS vs Average Importance

We observe a right-skewed FDS distribution, which moti-
vates rank-based inference. Figures 3 and 4 show moderate
positive associations with Effort (r = 0.316) and Importance
(r = 0.231), but substantial scatter indicates that raw volume
alone does not fully explain FDS variation. Accordingly, we
complement simple correlations with partial, rank correlations
that control for churn and files to isolate signal beyond volume.
These analyses show a positive association between FDS
and Effort after controls and a repo-specific association with
Importance, supporting our use of non-parametric, exposure-
controlled tests in Section IV.C.

To assess whether FDS provides additional insight beyond
traditional metrics, we compared FDS rankings with those
derived from simpler indicators like total commits and churn.
While some overlap was observed, particularly among prolific
contributors, the rankings often diverged. This divergence
highlights the FDS’s capacity to incorporate qualitative di-
mensions, such as the contextual importance of work and

consistency over time, rather than rewarding raw volume
alone.

Given heavy-tailed distributions, we rely on matched, paired
non-parametric tests and effect sizes. Accordingly, cross-
repository results are reported as paired Wilcoxon p-values
and Cliff’s § with bootstrap CIs (Tables II-V).

C. Matched Top-Decile (Linux)

We compare the top decile by FDS against the top decile
by commit count using one-to-one matching (Hungarian algo-
rithm) on z-scored total_churn, total_files, and unique_builds
(34 pairs). As summarized in the Linux Kernel row of Ta-
bles II and III, FDS-ranked developers exhibit higher Average
Importance (A=-+0.314, Wilcoxon p=0.0038, Cliff’s §=0.26)
and higher Average Effort (A= + 0.079, p=0.0015, §=0.32)
at equal volume exposure. Quality proxies in Tables IV-V
show lower rework (borderline; p=0.069) and similar rollback
(p=0.18). Matching balance was adequate (all covariate SMDs
< 0.1).

V. CROSS-REPOSITORY VALIDATION

To address the generalizability of our framework and re-
spond to the need for broader validation, we extended our
analysis to four additional open-source repositories beyond
the Linux Kernel. Matching uses the Hungarian algorithm
on z-scored total_churn, total_files, and unique_builds. Deltas
(A) are FDS—Commit with bootstrap percentile confidence
intervals.

A. Additional Datasets

We selected four open-source repositories that collectively
capture a broad spectrum of project characteristics, including
team size, programming language, application domain, and
development maturity. Table I summarizes their key attributes
alongside the Linux Kernel baseline.

TABLE I
REPOSITORY CHARACTERISTICS FOR CROSS-VALIDATION

Repository  Lang N Days FDS Range Med
Linux Kernel C 339 974 0.011-210.2 0.35
Kubernetes Go 199 1,321 0.013-333.9 0.30
TensorFlow  Py/C++ 146 746 0.012-453.2 0.27
Apache Kafka Java/Scala 225 589 0.010-33.30 0.35
PostgreSQL  C 31 562 0.057-159.1 5.89

OS Kernel, Container orchestration, ML framework, Dist. systems, RDBMS

These projects range from large, multi-team infrastructures
(e.g., Kubernetes) to specialized database systems (e.g., Post-
greSQL); they cover four different primary languages and span
domains such as cloud orchestration, machine learning, dis-
tributed messaging, and relational data management. Despite
substantial variation in team size (31 to 339 contributors)
and observation windows (562 to 1,321 days), all reposito-
ries exhibit long-tailed FDS distributions with low medians,
confirming that our framework consistently identifies core—
periphery structures across projects with vastly different scales
and team compositions.



TABLE II
MATCHED TOP-DECILE: AVERAGE IMPORTANCE (MAD-Z). A 1S
FDS-COMMIT.
Repo n A p  Cliff’s 6 95% CI (A)
Linux Kernel 34 0.314 0.004 0.26 [0.143, 0.511]
Kubernetes 20 0.206 0.012 0.40 [0.066, 0.391]
TensorFlow 15 —0.053 0.075 —0.27 [—0.113, —0.003]
Apache Kafka 23 0.071 0.046 0.17 [0.015, 0.139]
PostgreSQL 16 0.015 0.593 0.06 [—0.025, 0.062]
TABLE III
MATCHED TOP-DECILE: AVERAGE EFFORT (MAD-Z). A 1S
FDS-COMMIT.
Repo n A p  Cliff’s 6 95% CI (A)
Linux Kernel 34 0.079 0.002 0.32 [0.039, 0.125]
Kubernetes 20 0.058 0.012 0.40 [0.023, 0.095]
TensorFlow 15 0.058 0.028 0.40 [0.011, 0.115]
Apache Kafka 23 0.055 0.028 0.26 [0.016, 0.105]
PostgreSQL 16 0.034 0.109 0.19 [0.000, 0.072]
TABLE IV
REWORK RATIO (PP): REVISIT SAME DIR WITHIN 48H. LOWER IS
BETTER.
Repo n  App p  Cliff’s § 95% CI (A)
Linux Kernel 34 —4.5 0.069 —0.15 [—8.9, —0.1]
Kubernetes 20 —-5.6 0.263 —0.10 [—13.8, 2.3]
TensorFlow 15 1.9 0.249 0.13 [—0.9, 5.1]
Apache Kafka 23 1.6 0.917 -0.09 [—2.9, 7.1]
PostgreSQL 16 1.8 0.285 0.06 [0.0, 4.8]
TABLE V
ROLLBACK RATE (PP): COMMITS WITH ‘REVERT’ IN SUBJECT. LOWER IS
BETTER.
Repo n  App p  Cliff’s § 95% CI (A)
Linux Kernel 34 —-0.4 0.180 —0.06 [—1.1, 0.0]
Kubernetes 20 0.7 0.180 0.10 [0.0, 1.9]
TensorFlow 15 0.4 0.317 0.07 [0.0, 1.2]
Apache Kafka 23 0.0 0.655 0.00 [—0.3, 0.3]
PostgreSQL 16 0.4 0.109 0.19 [0.0, 1.0]
TABLE VI

EFFECT SIZES FOR META-ANALYSIS (CLIFF’S §).

Repo n Otmp OEff

Linux Kernel 34 0.26 0.32
Kubernetes 20 0.40 0.40
TensorFlow 15  —-0.27 0.40
Apache Katka 23 0.17 0.26
PostgreSQL 16 0.06 0.19

B. Matched Results Across Repositories

Tables II and III report exposure-controlled matched top-
decile differences (FDS—Commit) for Average Importance
and Average Effort. FDS shows significant positive lifts in

Linux, Kubernetes, and Kafka for both metrics. TensorFlow
exhibits a negative Importance difference (A = —0.053,
p = 0.0747), likely due to automation-heavy contributors
(e.g., CI bots, code generation) that FDS’s Importance model
downweights, while the Effort signal remains positive and
significant (A = 40.058, p = 0.0277). PostgreSQL converges
due to its small roster (16 pairs), limiting statistical power.
Quality proxies (Tables IV-V) are similar across cohorts, with
occasional reductions in rework.

C. Pooled Effects (Meta-Analysis)

Table VI lists Cliff’s § per repository for meta-analysis.
Pooling across repositories via a random-effects model, we
observe consistent small-medium effect sizes favoring FDS on
Effort (median 6 = +0.32, range +0.19 to +0.40), while Im-
portance effects are more heterogeneous (median § = +0.17,
range —0.27 to +0.40), reflecting context-sensitivity in how
FDS’s Importance model interacts with different development
workflows. This pattern supports our design philosophy: Effort
generalizes well across projects, while Importance may benefit
from domain-specific tuning.

D. Framework Robustness

We perturb torque parameters (o, 3, gap) by £25% and
observe top-k Jaccard > 0.6 for developer rankings, indicating
stable clustering and scores under reasonable settings. Cali-
bration plots align higher predicted Importance with elevated
rework/rollback risk, supporting reliability.

E. Implications for Broader Adoption

FDS’s Effort signal generalizes across large, diverse projects
even after exposure control, while Importance is context-
sensitive (e.g., automation, generated code, release cues). This
heterogeneity is expected and suggests tailoring Importance
inputs (release proximity, commit-type semantics) for maximal
discriminative power. Because the framework remains commit-
only, deployment overhead stays low.

VI. LIMITATIONS AND THREATS TO VALIDITY

While our Torque Clustering-based framework provides a
more nuanced approach to measuring developer productivity
than traditional metrics, it is essential to acknowledge several
inherent limitations and potential threats to the validity of our
findings.

A. The Creative Nature of Software Development

Software engineering is fundamentally a creative endeavor
where standardized measurement remains challenging. As
noted by Graziotin et al. [4], developer creativity and problem-
solving approaches vary significantly, making direct produc-
tivity comparisons problematic. Solutions to similar problems
can differ substantially between developers based on their
experience, cognitive styles, and technical backgrounds. Our
framework attempts to address this by focusing on work builds
rather than individual commits, but we acknowledge that
the creative aspects of problem-solving—such as architectural
insights or innovative algorithms—may not be fully captured



by quantitative metrics derived from version control data
alone.

B. External Factors Beyond Developer Control

Besker et al. [1] identified five major impediments to
developer productivity that exist outside individual developer
control: poor software architecture, legacy code issues, dif-
ficulty finding relevant information, excessive dependencies,
and inadequate engineering tools. These environmental factors
can significantly impact measured productivity. Our FDS met-
ric, while accounting for code complexity and architectural
impact, cannot fully isolate a developer’s true productivity
from these environmental factors. For instance, a developer
working in a well-architected codebase with modern tooling
may appear more productive than an equally skilled devel-
oper struggling with technical debt and legacy systems. This
limitation threatens the construct validity of our metric when
comparing developers across different project contexts.

C. The Satisfaction-Productivity Feedback Loop

Graziotin et al. [4] revealed a bi-directional relationship
between developer satisfaction and productivity: higher pro-
ductivity leads to increased job satisfaction, which in turn
drives further productivity gains. Additionally, their research
demonstrated that happy developers solve problems faster, pro-
duce higher quality code, and exhibit better creative problem-
solving abilities. Our current framework focuses primarily on
objective productivity metrics without incorporating satisfac-
tion or well-being indicators. This omission may result in
an incomplete picture, particularly when evaluating long-term
sustainable productivity versus short-term output that could
lead to burnout.

D. Relationship to Comprehensive Productivity Frameworks

Our framework differs fundamentally from holistic produc-
tivity frameworks such as SPACE (Satisfaction, Performance,
Activity, Communication, Efficiency) [3] and DevEx (focusing
on feedback loops, cognitive load, and flow state) [5]. These
frameworks incorporate qualitative dimensions including de-
veloper satisfaction, well-being, and experience that cannot
be derived from commit data alone. For example, SPACE
explicitly warns against using single metrics and emphasizes
the importance of measuring across multiple dimensions. Our
Torque Clustering approach focuses exclusively on extracting
productivity signals from version control history, providing
an automated and scalable solution at the cost of missing
these broader human-centered dimensions. This represents a
conscious trade-off between comprehensiveness and practical-
ity—while we cannot capture the full spectrum of developer
productivity, we offer an objective, readily deployable metric
that requires only data already available in every Git reposi-
tory.

E. Threats to Internal Validity

Several factors may affect the causal relationships in our
study. First, the torque clustering parameters (o, 3, and gap

threshold) were calibrated using heuristics that may not gener-
alize across all project types. Second, the weights assigned to
different components of the effort and importance scores were
determined based on domain expertise rather than empirical
optimization, potentially introducing bias. Third, our valida-
tion using the Linux Kernel dataset represents a specific type
of large-scale, mature open-source project that may not reflect
the dynamics of smaller projects or proprietary enterprise
software development.

F. Threats to External Validity

The generalizability of our findings faces several limitations.
While we validated across five diverse repositories (Linux,
Kubernetes, TensorFlow, Kafka, PostgreSQL), each analysis
used a fixed time window ranging from 562 days (PostgreSQL)
to 1,321 days (Kubernetes), with contributor counts varying
from 31 (PostgreSQL) to 339 (Linux). These fixed windows
may not capture seasonal variations in development patterns
or longer-term productivity trends, and the repository-specific
time spans reflect differences in project maturity and commit
velocity rather than uniform sampling strategies. Additionally,
open-source development patterns may differ significantly
from proprietary enterprise development where different in-
centive structures, collaboration patterns, and data availability
conditions exist.

G. Threats to Construct Validity

The operationalization of “developer productivity” through
our FDS metric may not fully align with the theoretical
construct of productivity in software engineering. As noted by
Storey and Treude [10], productivity dashboards and metrics
can create unintended consequences, such as gaming behaviors
where developers optimize for the metric rather than actual
productivity. Our reliance on commit-level data also means
we cannot capture important productivity aspects such as
code review quality, mentoring activities, architectural design
contributions that don’t result in immediate code changes, or
time spent in planning and requirements analysis.

VII. FUTURE WORK
A. Extended Validation and Reproducibility Studies

While we have validated across five diverse repositories
(Linux, Kubernetes, TensorFlow, Kafka, PostgreSQL), future
work should extend to proprietary enterprise repositories with
different development patterns, smaller-scale projects with
varying team dynamics, and longitudinal studies tracking
repositories over extended periods to validate temporal sta-
bility of the metrics and their ability to capture evolving
development patterns.

Specifically, we aim to conduct studies in proprietary en-
terprise environments where development workflows, code
review practices, and contribution patterns may differ sub-
stantially from open-source contexts. Additionally, longitudi-
nal studies will help identify potential biases in our current
parameter calibration and provide insights into necessary ad-
justments for different software development contexts. These



extended validation efforts will strengthen claims about the
framework’s generalizability and establish best practices for
parameter tuning across diverse organizational settings.

B. Integration with Al-Assisted Development

The emergence of Al coding assistants such as GitHub
Copilot has fundamentally altered the developer productivity
landscape. Recent studies from ANZ Bank demonstrated 40%
faster task completion with AT assistance, yet the DORA 2024
report paradoxically suggests that Al tools may negatively
impact overall software delivery performance, possibly due
to increased technical debt or reduced code quality. Future
iterations of our framework should incorporate mechanisms to
distinguish between Al-generated and human-written code in
commits, adjust effort calculations to account for Al-assisted
development, measure the quality implications of Al-generated
code on long-term productivity, and develop new metrics that
capture the effectiveness of human-Al collaboration. These
adaptations will be crucial for maintaining the relevance of
productivity metrics in an increasingly Al-augmented devel-
opment environment.

C. Incorporating Developer Experience Dimensions

Future work should expand the framework to incorporate
qualitative aspects of the software development lifecycle,
including sprint stories, ceremonies, and other planning activ-
ities. These measures could complement the newly developed
FDS indicator, offering a more holistic understanding of the
developer experience. For example, the velocity of the coding
phase could be undermined by the preceding phase due to the
lack of clear requirements. Shedding insights on the stories’
quality can help address any blind spots in the FDS logic.

The new framework could also benefit from the DevEx
discipline’s three core dimensions: feedback loops (the speed
and quality of responses to developer actions), cognitive load
(mental processing required for tasks), and flow state (sus-
tained focus periods). This integration could involve analyzing
commit patterns to detect flow state indicators, measuring
feedback loop efficiency through commit-to-merge times, and
inferring cognitive load from code complexity changes and
context switching patterns. Such enhancements would provide
a more holistic view of developer productivity beyond purely
quantitative metrics.

D. Addressing the Productivity-Satisfaction Relationship

Given the established bi-directional relationship between
satisfaction and productivity, future versions should incorpo-
rate satisfaction indicators. This could be achieved through
sentiment analysis of commit messages and code review com-
ments, integration with developer survey data when available,
and detection of frustration patterns such as repeated reverts or
fix commits. Additionally, developing metrics for sustainable
pace and work-life balance indicators would help organizations
optimize for long-term productivity rather than short-term
output.

VIII. CONCLUSION

This paper presented a novel framework for measuring de-
veloper productivity using Torque Clustering to automatically
group commits into coherent work builds, followed by a Fair
Developer Score (FDS) that combines effort and importance
metrics. Our approach addresses key limitations of traditional
productivity metrics by moving beyond simple commit counts
and lines of code to capture the contextual significance of
contributions.

The framework was validated across five diverse reposi-
tories (Linux, Kubernetes, TensorFlow, Kafka, PostgreSQL),
demonstrating its ability to differentiate between central and
peripheral contributors while capturing both quantitative effort
and contextual importance. While acknowledging limitations
related to the creative nature of software development and the
absence of qualitative dimensions, our framework provides a
practical, scalable solution that requires only version control
data.

As software development continues to evolve with Al
assistance and new collaboration paradigms, this work pro-
vides a foundation for more nuanced and equitable developer
productivity measurement. The Fair Developer Score offers
organizations a data-driven approach to recognize and reward
meaningful contributions, promoting both individual satisfac-
tion and organizational success.
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