
Fair Developer Score: Build-Adjusted Effort &

Impact
Rethinking Developer Productivity Metrics in the AI Era

ASE 2025 – ISE Workshop

Xinzhou Wang · Jiancong Zhu · Jinghan Feng · Zixuan Zhang · Joshua Rauvola · Devon Delgado · Ahmad Antar · Abid Ali

AI tools went from niche to default in just three years

Share of developers currently using AI tools – Stack Overflow Developer Surveys 2022–2025

Summary

Stack Overflow data shows rapid adoption: 44% → 62% → ~79% of developers are now

using AI tools (2023–2025).

Impact

AI support moved from experimental to default in the developer workflow in just three

survey cycles.

Annotations: 2022: Pre-mainstream baseline (≈0%, not directly measured) 2023: 44% of developers already using AI tools 2025: ~79% of developers using AI tools at least sometimes

AI-generated content has rapidly caught up with human

content
Monthly share of AI vs human-written articles (Graphite.io, 2020–May 2025)

Human AI

This chart vividly illustrates the rapid rise of AI in content generation. While AI contributed less than 5% of new articles in early 2020, its share dramatically

increased, especially after the launch of ChatGPT in late 2022. By late 2024, AI-generated articles began to surpass human-written ones, marking a significant shift

in the content landscape.

The Evolving Software Development

Landscape

79%
AI Tool Usage

Developers now use AI

coding assistants daily

40%
AI-Generated Code

New code comes from using

AI under heavy usage in large

companies such as Coinbase

30%
Bot Contributions

A large share of PRs now

come from bots, inflating

activity metrics.

180M
Platform Scale

Active developers across

GitHub alone

Traditional individual metrics struggle to remain meaningful in this new environment where human and AI contributions

intertwine across massive collaborative ecosystems.

Introducing the Fair Developer Score
The Fair Developer Score (FDS) is a commit-centric, build-adjusted framework that fundamentally rethinks productivity

measurement by combining two orthogonal dimensions.

Developer Effort

How much and how substantively each developer

contributed to a build

Build Importance

How impactful that build is to the system and

organization

FDS aggregates these dimensions by summing Effort × Importance across all builds. This approach is lightweight and

generalizable – it uses only commit metadata, requiring no raw source code or proprietary ticket systems, making it broadly

deployable across open-source and enterprise environments.

The FDS Pipeline: From Commits

to Score

Commit Clustering

Group related commits into logical builds using Torque Clustering

Effort Scoring

Compute each developer's effort per build using standardized multi-factor

analysis

Importance Scoring

Assess each build's impact through structural and semantic features

Aggregation

Sum Effort × Importance across all builds to produce FDS

This pipeline transforms raw version control history into meaningful, context-aware

productivity measurements that capture both the quantity and quality of developer

contributions.

Commit Clustering: Defining Logical Work

Units
A build represents a logical work unit – a feature, bug fix, or refactor – that may span multiple commits. We use Torque

Clustering to identify these natural boundaries in the commit stream.

The torque between consecutive commits i and j combines temporal and change magnitude signals:

When Torque(i,j) > gap, we start a new build. Large jumps in time or change magnitude signal task boundaries.

Our implementation also considers file scope shifts and author continuity as heuristics, capturing multi-commit

features as single cohesive builds for more realistic task-level analysis.

Developer Effort: Multi-Dimensional Contribution

Effort captures each developer's contribution to a build beyond simple line counts, combining six standardized dimensions weighted to reflect true

productivity:

Scale

Size of changes measured through logarithm of churn

Reach

Breadth of impact across directory and file hierarchy

Centrality

Importance of edited components via PageRank on co-change graph

Leadership

Leadership in build initiation and finalization

Novelty

Introduction of new modules and APIs

Speed

Rapid, focused commit cadence indicating concentrated work

All features use MAD–Z standardization for robustness against heavy-tailed distributions, preventing any single metric from dominating the score.

Build Importance: Quantifying Task Impact

While Effort is developer-specific, Importance is a property of the build itself, measuring how significant a given task is to the project:

Scale (30%)

Total churn in the build reflecting overall size

Scope (20%)

How widespread the change across files and subsystems

Centrality (15%)

Effect on architecturally core components

Complexity (15%)

Joint signal of size multiplied by dispersion

Type (10%)

Priority classification from commit messages

Release (10%)

Temporal proximity to major release milestones

The weights reflect a research-validated prior: scale and scope matter most, while architectural position, complexity, priority, and timing provide essential context.

Fair Developer Score: The Effort–Impact

Fusion
The Fair Developer Score elegantly combines individual effort with task impact through multiplication and summation across all

builds:

What This Achieves

• Rewards high-effort work on high-importance builds

• De-emphasizes low-value churn and peripheral

contributions
• Balances quantity with quality and context

• Moves from activity measurement to outcome alignment

Key Insight: The same effort on low-importance

work contributes less to FDS, and low-effort

involvement in important builds contributes less as

well. This multiplicative relationship addresses

fundamental biases in traditional volume-based

metrics.

Validation: Linux Kernel Case

Study
We validated FDS on the Linux kernel – one of the largest and longest-running

open-source projects – analyzing 974 days of development across 339 contributors.

Rigorous Matched-Pair Design

To ensure fair comparison, we matched top-decile FDS developers one-to-one with

top-decile commit-count developers using the Hungarian algorithm, controlling for total

churn, files changed, and unique builds participated in.

Higher Average Importance

FDS-ranked developers work on

systematically more impactful builds

at equal volume

Higher Average Effort

More substantive contributions per

build, reflecting deeper engagement

Lower Rework Rate

Fewer short-interval directory revisits, indicating more sustainable contributions

Cross-Repository

EvaluationTo test generalizability, we applied the same methodology across four additional major open-source projects: Kubernetes, TensorFlow, Apache Kafka, and PostgreSQL.

1Linux Kernel

✓ Effort significant

✓ Importance significant

2 Kubernetes

✓ Effort significant

✓ Importance significant

3Apache Kafka

✓ Effort significant

✓ Importance significant

4 TensorFlow

✓ Effort significant

○ Importance mixed

5PostgreSQL

✓ Effort significant

○ Small sample

Key Findings

The Effort model generalizes robustly – in all five repositories, top FDS developers show higher Effort than

volume-matched commit-count peers, with statistical significance in four of five projects.

The Importance signal is context-sensitive, performing best in Linux, Kubernetes, and Kafka. TensorFlow's heavy

automation and generated code patterns require Importance model tuning.

This pattern validates our design: Effort is universal, while

Importance should adapt to project-specific workflows and

automation profiles.

Conclusion & Future Outlook

What FDS Delivers

Today• Build-adjusted, commit-only metric combining Developer

Effort and Build Importance
• Validated differentiation of core from peripheral

contributors across five major repositories
• Practical framework requiring only version control metadata

Known Limitations

• Commit-only view misses qualitative factors like mentoring

and design work
• Some parameters are expert-chosen and benefit from

project-specific tuning

The AI Era

ImperativeAs AI reshapes software development, our assessment

frameworks must evolve. Future directions include:

1. Distinguishing human versus AI-generated code in Effort

calculations
2. Tracking technical debt and quality implications of AI

assistance
3. Integrating with DevEx and SPACE frameworks for

satisfaction and cognitive load

FDS offers a practical step toward fairer, impact-aligned measurement – moving beyond naive activity counts to recognize

meaningful contributions in an increasingly complex development landscape.

Appendix

