Fair Developer Score: Build-Adjusted Effort &
Impact

Rethinking Developer Productivity Metrics in the Al Era

ASE 2025 - ISE Workshop

Xinzhou Wang - Jiancong Zhu - Jinghan Feng - Zixuan Zhang - Joshua Rauvola - Devon Delgado - Ahmad Antar - Abid Ali

Al tools went from niche to default in just three vears

Share of developers currently using Al tools — Stack Overflow Developer Surveys 2022-2025

Summary Impact
Stack Overflow data shows rapid adoption: 44% > 62% > ~79% of developers are now Al support moved from experimental to default in the developer workflow in just three
using Al tools (2023-2025). survey cycles.

90% -

79%

62%
60% -

44%

30% =

0%

0% -~

1 1
2022 2023 2024 2025

Al-generated content has rapidly caught up with human
content

Monthly share of Al vs human-written articles (Graphite.io, 2020-May 2025)

100% =
B Human BB Al

75% =

50%- 7 .. =

25% =

00 oL 22T 08 S 7 L)
1 1 1 1 1
2020 2021 2022 2023 2024 2025

This chart vividly illustrates the rapid rise of Al in content generation. While Al contributed less than 5% of new articles in early 2020, its share dramatically
increased, especially after the launch of ChatGPT in late 2022. By late 2024, Al-generated articles began to surpass human-written ones, marking a significant shift
in the content landscape.

The Evolving Software Development
Landscape

719% 40% 30% 180M

Al Tool Usage Al-Generated Code Bot Contributions Platform Scale
Developers now use Al New code comes from using A large share of PRs now Active developers across
coding assistants daily Al under heavy usage in large come from bots, inflating GitHub alone

companies such as Coinbase activity metrics.

Traditional individual metrics struggle to remain meaningful in this new environment where human and Al contributions
intertwine across massive collaborative ecosystems.

Introducing the Fair Developer Score

The Fair Developer Score (FDS) is a commit-centric, build-adjusted framework that fundamentally rethinks productivity
measurement by combining two orthogonal dimensions.

Developer Effort Build Importance
How much and how substantively each developer How impactful that build is to the system and
contributed to a build organization

FDS aggregates these dimensions by summing Effort x Importance across all builds. This approach is lightweight and
generalizable — it uses only commit metadata, requiring no raw source code or proprietary ticket systems, making it broadly
deployable across open-source and enterprise environments.

The FDS Pipeline: From Commits

1. Time Proximity (dt_sec) Source: kafka) - Commits = Builds
o 2. File Scope (files_changed) GitHub Commit
to S co re & | 3. Author Consistency Data
‘_; (author)
v l ‘ Builds- Logical Work
? Torque(i, j) = a At;; + f Acj; + ;/(l - :::D—i:)T Units
= - & grid searc
0,0 Commlt CIUSterlng new build if Torque(i, j) > 7 validation
e . . , . . . S _ 1sins;|
S Group related commits into logical builds using Torque Clustering At =t —tjl, Acij =|log(l +¢;) —log(1 +¢;)|, Jaccard(S;,S;) = SIS
Effort,, = Share, ;- Y., wk Zi(u,b)
Effort scorlng Share, , = Cl‘f‘-ﬂ“hUl'ﬂu,b ’ Z(x) = 0.6745 x—median
f Y, eff. churn,; MAD
dx Compute each developer's effort per build using standardized multi-factor Speed = exp(_w)
speed
analysis PR(j)
" Centrality = PR(d) = =2 + dzj—’ddg e
& churn in dir i
: 2 | Reachm= M= Zi Pilogpis Pi = %o chum
Importance Scoring &
@) g
o : z =5
Assess each build's impact through structural and semantic features Imp, = Y. U Zn(b)
Release = exp(—days D8)
Trel
Agg regation Complexity = #dirs X log(1 + total churn)
‘M Sum Effort x Importance across all builds to produce FDS Centrality = PR(d) = 3% + IZJ—"/d:gR ((j,)

This pipeline transforms raw version control history into meaningful, context-aware DS, = Xy Effort, - Imp,

productivity measurements that capture both the quantity and quality of developer

=
=
k=
«
o0
o
!
o0
o0
<

contributions.

Commit Clustering: Defining Logical Work
Units

A build represents a logical work unit — a feature, bug fix, or refactor — that may span multiple commits. We use Torque
Clustering to identify these natural boundaries in the commit stream.

The torque between consecutive commits /i and j combines temporal and change magnitude signals:
Torque(i,j) = alt; + BAC;

When Torque(ij) > gap, we start a new build. Large jumps in time or change magnitude signal task boundaries.

[Our implementation also considers file scope shifts and author continuity as heuristics, capturing multi-commit
features as single cohesive builds for more realistic task-level analysis.

Developer Effort: Multi-Dimensional Contribution

Effort captures each developer's contribution to a build beyond simple line counts, combining six standardized dimensions weighted to reflect true

productivity:
Effortyp = Share,oWiZscgre + WaZreach + W3Zc entrality + WaZpominance T WsZnovelty T WeZspeed)
000
Scale O0C Reach
00QO0
Size of changes measured through logarithm of churn Breadth of impact across directory and file hierarchy
- w -
Ptfo Centrality % Leadership
Importance of edited components via PageRank on co-change graph Leadership in build initiation and finalization

@ Novelty %} Speed

Introduction of new modules and APls Rapid, focused commit cadence indicating concentrated work

All features use MAD-Z standardization for robustness against heavy-tailed distributions, preventing any single metric from dominating the score.

Build Importance: Quantifying Task Impact

While Effort is developer-specific, Importance is a property of the build itself, measuring how significant a given task is to the project:

/mpOffOnCeb = OBOZSCG/E + OZOZSCope + 0.1 SZCentra/[ty + 01 SZCOmp/exjty + 01 OZType + 0.1 OZR@/GOSE

Scale (30%)

Total churn in the build reflecting overall size

N A
v N

Scope (20%)

How widespread the change across files and subsystems

Centrality (15%)

Effect on architecturally core components

R

Complexity (15%)

Joint signal of size multiplied by dispersion

el

Type (10%)

Priority classification from commit messages

Release (10%)

Temporal proximity to major release milestones

The weights reflect a research-validated prior: scale and scope matter most, while architectural position, complexity, priority, and timing provide essential context.

Fair Developer Score: The Effort—-Impact
Fusion

The Fair Developer Score elegantly combines individual effort with task impact through multiplication and summation across all
builds:

FDS, = 5 Effort,p* Importancey

b
What This Achieves
[Key Insight: The same effort on low-importance
- Rewards high-effort work on high-importance builds work contributes less to FDS, and low-effort
- De-emphasizes low-value churn and peripheral involvement in important builds contributes less as
contributions well. This multiplicative relationship addresses
* Balances quantity with quality and context fundamental biases in traditional volume-based

« Moves from activity measurement to outcome alignment metrics.

FDS vs Average Importance

Validation: Linux Kernel Case
Study

We validated FDS on the Linux kernel — one of the largest and longest-running
open-source projects — analyzing 974 days of development across 339 contributors.

® a
o ®°® ©° .

o a® wiveneie SNGITINIS SitD St s RNEE eI SRIIT oo R i g orous M atc h ed - Pai r D es i g n
0.5 1.0
Average Importance

To ensure fair comparison, we matched top-decile FDS developers one-to-one with

, top-decile commit-count developers using the Hungarian algorithm, controlling for total
Fig. 4. FDS vs Average Importance

churn, files changed, and unique builds participated in.

TABLE III Higher Average Importance Higher Average Effort

MATCHED TOP-DECILE: AVERAGE EFFORT (MAD-Z). A 1S) _)
FDS—-COMMIT. FDS-ranked developers work on More substantive contributions per

systematically more impactful builds build, reflecting deeper engagement

Repo A p Cliff’s § 95% CI (A)
—_—m at equal volume

Linux Kernel 0.002 0.32 [0.039, 0.125]
Kubernetes 0.012 0.40 [0.023, 0.095]
TensorFlow 0.028 0.40 [0.011, 0.115]

Apache Kafka 0.028 0.26 [0.016, 0.105]
PostgreSQL 0.109 0.19 [0.000, 0.072] Lower Rework Rate

Fewer short-interval directory revisits, indicating more sustainable contributions

Cross-Repository

Eualwiatmmied the same methodology across four additional major open-source projects: Kubernetes, TensorFlow, Apache Kafka, and PostgreSQL.

Linux Kernel 1

v Effort significant
v Importance significant

TABLE I 2 Kubernetes
REPOSITORY CHARACTERISTICS FOR CROSS-VALIDATION / Effort significant

v Importance significant

Repository Lang N Days FDS Range Med

Apache Kafka 3
Linux Kernel C 339 974 0.011-210.2 0.35
Kubernetes Go 199 1,321 0.013-333.9 0.30 v Effort significant
TensorFlow Py/C++ 146 746 0.012-453.2 0.27 / Importance significant
Apache Kafka Java/Scala 225 589 0.010-33.30 0.33
PostgreSQL C 31 562 0.057-159.1 5.89 £ TensorFlow

OS Kernel, Container orchestration, ML framework, Dist. systems, RDBMS v/ Effort significant

O Importance mixed

PostgreSQL 5

v Effort significant
O Small sample

Key Findings

[J This pattern validates our design: Effort is universal, while
The Effort model generalizes robustly - in all five repositories, top FDS developers show higher Effort than Importance should adapt to project-specific workflows and
volume-matched commit-count peers, with statistical significance in four of five projects. automation profiles.

The Importance signal is context-sensitive, performing best in Linux, Kubernetes, and Kafka. TensorFlow's heavy
automation and generated code patterns require Importance model tuning.

. ALFDS Analyses ‘ Developer Productivity Dashboard

Commits Developers Buids Croated

89

m 1 day, M Bours 0
% A days, M hours g0

\ A
ook 400 M0
" SO

Chumn per Bulld Segment

Conclusion & Future Outlook

What FDS Delivers The Al Era
Toga%l—adjusted, commit-only metric combining Developer H!‘H?EQHN& software development, our assessment
Effort and Build Importance frameworks must evolve. Future directions include:
) Va“déted dlfferentlat.lon i <.:ore frorrT pe.rlpheral 1. Distinguishing human versus Al-generated code in Effort
contrllbutors across five rr?e.uor rep03|tor.|es calculations
- Practical framework requiring only version control metadata 2. Tracking technical debt and quality implications of Al
assistance

3. Integrating with DevEx and SPACE frameworks for
satisfaction and cognitive load

Known Limitations

- Commit-only view misses qualitative factors like mentoring

and design work
« Some parameters are expert-chosen and benefit from

project-specific tuning

FDS offers a practical step toward fairer, impact-aligned measurement — moving beyond naive activity counts to recognize
meaningful contributions in an increasingly complex development landscape.

AppendiXx

TABLE III
MATCHED TOP-DECILE: AVERAGE EFFORT (MAD-Z). A 1S

FDS—COMMIT. TABLE V ,
ROLLBACK RATE (PP): COMMITS WITH ‘REVERT’ IN SUBJECT. LOWER IS

BETTER.,

Repo A p Cliff’s § 95% CI (A)

Repo n App p Cliff’s § 95% CI (A)

Linux Kernel 0.32 [0.039, 0.125]

Linux Kernel 34 —0.4 0.180 —0.06 [—1.1, 0.0]
Kubernetes 0.40 [0.023, 0.095] Kubernetes 20 0.7 0.180 0.10 [0.0, 1.9]

TensorFlow 0.40 [0.011, 0.115] TensorFlow 15 0.4 0.317 0.07 [0.0, 1.2]
Apache Kafka 0.26 [0.016, 0.105] Apache Kaftka 23 0.0 0.655 0.00 [—0.3, 0.3]
PostgreSQL 0.19 [0.000, 0.072] PostgreSQL 16 0.4 0.109 0.19 [0.0, 1.0]

TABLE VI
TABLE IV EFFECT SIZES FOR META-ANALYSIS (CLIFF’S 9).

REWORK RATIO (PP): REVISIT SAME DIR WITHIN 48H. LOWER IS
BETTER. Repo n Olmp Okt

Linux Kernel

Repo n App p Cliff’s § 95% CI (A) SUBETIEEY

TensorFlow

Linux Kernel —4.5 0.069 —0.15 [—8.9, —0.1] Qg;;ﬁs‘giﬂ‘a
Kubernetes —-5.6 0.263 —0.10 [—13.8, 2.3]
TensorFlow 1.9 0.249 0.13 [—0.9, 5.1]
Apache Kafka 1.6 0.917 —0.09 [—2.9, 7.1]
PostgreSQL 1.8 0.285 0.06 [0.0, 4.8]

